472. Phthalaldehydes and Related Compounds. Part VII.* Further Applications of the N-Bromosuccinimide Preparative Method.

By John Blair, W. R. Logan, and G. T. Newbold.

Abstract

A new synthesis of gladiolic acid from 5 -methoxy-6-methylphthalan-4carboxylic acid is described which uses the N-bromosuccinimide method. Opianic acid and 3 -bromo- and 3 -methyl-opianic acid have been similarly prepared from the corresponding phthalides, and 4:5-dimethoxyphthalaldehyde from 4:5-dimethoxyphthalyl alcohol.

Although gladiolic acid ($\mathrm{I} ; \mathrm{R}=\mathrm{Me}, \mathrm{R}^{\prime}=\mathrm{H}$) \dagger had been synthesised ${ }^{\mathbf{1}}$ by oxidation of 4 -formyl-7-methoxy-6-methylphthalide (II; $\mathrm{R}=\mathrm{Me}, \mathrm{R}^{\prime}=\mathrm{H}, \mathrm{R}^{\prime \prime}=\mathrm{CHO}$) with periodate, the synthesis could not be achieved ${ }^{2}$ from the analogous 4 -chloromethyl compound (II; R $=\mathrm{Me}, \mathrm{R}^{\prime}=\mathrm{H}, \mathrm{R}^{\prime \prime}=\mathrm{CH}_{2} \mathrm{Cl}$) by treatment with N-bromosuccinimide and subsequent hydrolysis. The latter method had been effective ${ }^{3}$ for the preparation of 3 -formylopianic acid ($\mathrm{I} ; \mathrm{R}=\mathrm{OMe}, \mathrm{R}^{\prime}=\mathrm{H}$) from 4-chloromethylmeconin (II; $\mathrm{R}=\mathrm{OMe}$, $\mathrm{R}^{\prime}=\mathrm{H}, \mathrm{R}^{\prime \prime}=\mathrm{CH}_{2} \mathrm{Cl}$), but failed also for two other 4-chloromethylphthalides (II; $\mathrm{R}=$ $\mathrm{OMe}, \mathrm{R}^{\prime}=\mathrm{Me}^{4}$ or $\mathrm{OMe}, \mathrm{R}^{\prime \prime}=\mathrm{CH}_{2} \mathrm{Cl}$). However, application of the N-bromosuccinimide method to phthalancarboxylic acids, which had previously been used ${ }^{3,4}$ to convert the acids (III; $\mathrm{R}=\mathrm{OMe}, \mathrm{R}^{\prime}=\mathrm{H}, \mathrm{Me}$, or OMe) into the respective phthalaldehydecarboxylic acids ($\mathrm{I} ; \mathrm{R}=\mathrm{OMe}, \mathrm{R}^{\prime}=\mathrm{H}, \mathrm{Me}$ or OMe), has now been successful for the synthesis of gladiolic acid.

The requisite 5 -methoxy-6-methylphthalan-4-carboxylic acid (III; R $=\mathrm{Me}, \mathrm{R}^{\prime}=\mathrm{H}$) was obtained by isomerisation of 4 -hydroxymethyl-7-methoxy-6-methylphthalide ${ }^{5}$ (II; $\mathrm{R}=\mathrm{Me}, \mathrm{R}^{\prime}=\mathrm{H}, \mathrm{R}^{\prime \prime}=\mathrm{CH}_{2} \cdot \mathrm{OH}$) with methanolic sodium methoxide, a further example of the hydroxymethylphthalide-phthalancarboxylic acid rearrangement. ${ }^{3,4}$ Treatment of this acid (III; R $=\mathrm{Me}, \mathrm{R}^{\prime}=\mathrm{H}$) with N-bromosuccinimide and subsequent hydrolysis of the intermediate was followed by isolation of gladiolic acid as its hydrate triacetate (3-acetoxy-4-diacetoxymethyl-7-methoxy-6-methylphthalide). The last compound has been hydrolysed to gladiolic acid by hot mineral acid. ${ }^{1}$ The yield of gladiolic acid hydrate triacetate was 11% as compared with 10% in the less convenient periodate method. ${ }^{1}$

Three further phthalaldehydic acids and one o-phthalaldehyde have also been prepared by the N-bromosuccinimide method. Of special interest was the preparation of opianic acid (5 : 6-dimethoxyphthalaldehydic acid) (V; $\mathrm{R}=\mathrm{CO}_{2} \mathrm{H}, \mathrm{R}^{\prime}=\mathrm{H}$) from meconin (II; $\mathrm{R}=\mathrm{OMe}, \mathrm{R}^{\prime}=\mathrm{R}^{\prime \prime}=\mathrm{H}$) in spite of the presence of an easily substituted 4-position in the latter. 4-Bromomeconin (II; $\mathrm{R}=\mathrm{OMe}, \mathrm{R}^{\prime}=\mathrm{H}, \mathrm{R}^{\prime \prime}=\mathrm{Br}$), the product obtained when meconin is treated with bromine in acetic acid, ${ }^{6}$ was also converted by N -bromosuccinimide into 3 -bromo-opianic acid ${ }^{7}\left(\mathrm{~V} ; \mathrm{R}=\mathrm{CO}_{2} \mathrm{H}, \mathrm{R}^{\prime}=\mathrm{Br}\right.$), which was reduced by sodium borohydride back to the parent phthalide. The phthalide was also converted into 3 -bromo-opianic acid by successive reaction with dimethylamine, oxidation by chromic

[^0]acid, and hydrolysis following the method of Blair, Brown, and Newbold. ${ }^{8}$ 4-Methylmeconin ${ }^{9}$ (II; $\mathrm{R}=\mathrm{OMe}, \mathrm{R}^{\prime}=\mathrm{H}, \mathrm{R}^{\prime \prime}=\mathrm{Me}$) was smoothly converted into 3-methylopianic acid ($\mathrm{V} ; \mathrm{R}=\mathrm{CO}_{2} \mathrm{H}, \mathrm{R}^{\prime}=\mathrm{Me}$) by the N-bromosuccinimide method. Both 4-methylmeconin and 3 -methylopianic acid gave 3 -methylhemipinic anhydride (3:4-di-methoxy-6-methylphthalic anhydride) on oxidation with alkaline permanganate. We have been unable to transform this anhydride into 3-methylhemipinic acid; the anhydride

(1)

(II)

(III)

(IV)

(V)
separates on acidification of an alkaline solution of the acid. This behaviour is not without precedent since certain other $3: 6$-disubstituted phthalic acids pass readily into their anhydrides. ${ }^{10}$
m-Meconin (the lactone of $\mathrm{IV} ; \mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{CO}_{2} \mathrm{H}$) was reduced by lithium aluminium hydride to 4:5-dimethoxyphthalyl alcohol (IV; $\mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{CH}_{2} \cdot \mathrm{OH}$), oxidation of which with N-bromosuccinimide, following the usual procedure, gave 4:5-dimethoxyphthalaldehyde ($\mathrm{V} ; \mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{CHO}$) in good yield. The phthalaldehyde was characterised by the formation of its isonaphthazarin derivative ($2: 3$-dihydroxy- $6: 7$-dimethoxy-1:4-naphthaquinone); the latter compound has been obtained ${ }^{11}$ from the crude product of reduction of $4: 5$-dimethoxyphthalic bis- N-methylanilide by lithium aluminium hydride but detailed experimental directions were not given. In contrast with the behaviour of 4:5-dimethoxyphthalyl alcohol, the $3: 4$-dimethoxy-alcohol (IV; $\mathrm{R}=\mathrm{CH}_{2} \cdot \mathrm{OH}, \mathrm{R}^{\prime}=\mathrm{H}$), readily obtained by reduction of meconin with lithium aluminium hydride, did not yield a crystalline product on reaction with N-bromosuccinimide and subsequent hydrolysis under the same conditions.

Experimental

Ultraviolet absorption spectra were determined in EtOH solution unless otherwise stated; for other general directions see J., 1954, 3935. All N-bromosuccinimide reactions were carried out with irradiation from an adjacent 60 w lamp.

5-Methoxy-6-methylphthalan-4-carboxylic Acid (III; $\mathrm{R}=\mathrm{Me}, \mathrm{R}^{\prime}=\mathrm{H}$).-4-Hydroxymethyl7 -methoxy-6-methylphthalide (600 mg .) was heated under reflux for 7 hr . with a solution of methanolic sodium methoxide from sodium (328 mg .) and methanol ($15 \mathrm{c.c}$.). Isolation of the product as described under the preparation of $5: 6$-dimethoxyphthalan-4-carboxylic acid ${ }^{4}$ gave 5 -methoxy-6-methylphthalan-4-carboxylic acid (560 mg .) which separated from water as needles, $\mathrm{m} . \mathrm{p} .131-132^{\circ}$ (Found: C, $63.8 ; \mathrm{H}, 5.6 \%$; equiv., 207. $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{4}$ requires C, 63.45 ; H, $5 \cdot 8 \%$; equiv. 208). It had $\mathrm{p} K_{a} 3 \cdot 13$. Light absorption : Max. at $2140(\varepsilon 16,000)$ and 2970 ($\varepsilon 3000$), inflexion at $2350 \AA(\varepsilon 6000)$.

Gladiolic Acid Hydrate Triacetate.-The foregoing acid (200 mg .) in dry benzene (12 c.c.) and dry carbon tetrachloride (12 c.c.) was heated under reflux for 15 min . with N-bromosuccinimide (385 mg .). The cooled solution was filtered and the filtrate evaporated under reduced pressure, to yield a brown oil which was heated on the steam-bath with water (10 c.c.) for $1_{\frac{1}{2}} \mathrm{hr}$. with frequent shaking. The cooled solution was extracted with chloroform (3×25 c.c.), and the combined extracts were washed with 10% aqueous sodium hydrogen carbonate (3×50 c.c.). The combined aqueous washings were acidified and the crude gladiolic acid was isolated and converted ${ }^{1}$ into the hydrate triacetate, which separated from aqueous ethanol as needles (39 mg .), m. p. and mixed m. p. $130-131^{\circ}$ (lit., ${ }^{1}$ m. p. $131-132^{\circ}$) (Found : C, $55 \cdot 6 ;$ H, $5 \cdot 3$.

[^1]Calc. for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{9}$: C, 55•7; H, 4.95\%). Light absorption : Max. at $2140(\varepsilon 37,000)$ and 2980 ($\varepsilon 3400$), inflexion at $2320 \AA(\varepsilon 9000)$.

4:5-Dimethoxyphthalyl Alcohol.-m-Meconin ($2 \cdot 8 \mathrm{~g}$.) in tetrahydrofuran ($30 \mathrm{c} . \mathrm{c}$.) was added during 15 min . to a refluxing part-solution of lithium aluminium hydride (1.5 g .) in tetrahydrofuran (80 c.c.) and refluxing was continued for 4 hr . The cooled mixture was treated with ice, the organic layer separated, and the aqueous phase extracted with ether (100 c.c.). The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure, to give a gum which crystallised from benzene, yielding 4:5-dimethoxyphthalyl alcohol (2.01 g .) as needles, m. p. 111° (Found : C, $60 \cdot 7$; $\mathrm{H}, 7.4 . \mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{4}$ requires $\mathrm{C}, 60 \cdot 6 ; \mathrm{H}, 7 \cdot 1 \%$). Light absorption : Max. at $2100(\varepsilon 24,600), 2350(\varepsilon 10,200)$ and $2870 \AA(\varepsilon 2900)$.

3:4-Dimethoxyphthalyl Alcohol.-Meconin (10 g.) was reduced as in the preceding experiment, to 3:4-dimethoxyphthalyl alcohol (7.0 g .) which separated from benzene-light petroleum (b. p. $60-80^{\circ}$) as needles, m. p. 68° (Found : C, $60 \cdot 4 ; \mathrm{H}, 7.5 . \quad \mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{4}$ requires $\mathrm{C}, 60 \cdot 6$; H , $7 \cdot 1 \%$). Light absorption : Max. at $2080(\varepsilon 20,400), 2240(\varepsilon 7700)$, and $2800 \AA(\varepsilon 2000)$. The diacetate, prepared by the action of acetic anhydride-pyridine at room temperature for 5 days, separated from light petroleum (b. p. $60-80^{\circ}$) as needles, m. p. 58° (Found : C, 59.75 ; H, 6.55. $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{6}$ requires C, $59.6 ; \mathrm{H}, 6 \cdot 4 \%$). Light absorption: Max. at $2080(\varepsilon 21,500), 2300$ ($\varepsilon 7100$), and $2820 \AA(\varepsilon 2200)$.

4:5-Jimethoxyphthalaldehyde.-4 : 5-Dimethoxyphthalyl alcohol (114 mg.) and N-bromosuccinimide ($2 \cdot 1$ mols.) in benzene ($10 \mathrm{c.c}$.) and carbon tetrachloride ($30 \mathrm{c} . \mathrm{c}$.) were refluxed for 15 min. , during which a transient red colour appeared. The mixture was cooled, filtered, and evaporated under reduced pressure and the residual gum heated with water (40 c.c.) for $\frac{3}{4} \mathrm{hr}$. on the steam-bath with stirring. The solution was extracted with chloroform ($2 \times 25 \mathrm{c} . \mathrm{c}$.), and the combined extracts were washed with 10% aqueous sodium hydrogen carbonate (20 c.c.) and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Removing the solvent and crystallising the residue from benzene-light petroleum (b. p. $60-80^{\circ}$) provided 4:5-dimethoxyphthalaldehyde (80 mg .) as needles, m. p. 165° (Found: C, 62.0; H, 5.5. $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{4}$ requires $\mathrm{C}, 61 \cdot 85$; $\mathrm{H}, 5.2 \%$). Light absorption : Max. at $2050(\varepsilon 6500), 2520(\varepsilon 28,000)$, and $3200 \AA(\varepsilon 7800)$. Acidification (Congo-red) of the sodium hydrogen carbonate washings with 5 N -hydrochloric acid and isolation by chloroform gave m-opianic acid (20 mg .) which separated from water as needles, m. p. and mixed m. p. 185° (lit., ${ }^{12}$ m. p. 187-188 ${ }^{\circ}$).

2:3-Dihydroxy-6:7-dimethoxy-1:4-naphthaquinone.-A mixture of 4:5-dimethoxyphthalaldehyde (120 mg .), glyoxal sodium hydrogen sulphite (150 mg .) and potassium cyanide (25 mg .) was treated with 2 N -sodium carbonate ($3 \mathrm{c} . \mathrm{c}$.) and kept at 20° for 2 hr . with constant shaking and free access to air. The deep blue solution was made acid (Congo-red) with 3 N -hydrochloric acid, and the resulting red solution kept overnight at 0°. The product (40 mg .) which separated crystallised from water as needles, m. p. 260° (decomp.) (lit., ${ }^{11}$ m. p. 268°) (Found : C, $57 \cdot 3$; H, 4.5 . Calc. for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}_{6}$: C, $57.6 ; \mathrm{H}, 4 \cdot 0 \%$). Light absorption: in water, max. at 2030 $(\varepsilon 40,500), 2600(\varepsilon 38,000)$, and $3160(\varepsilon 10,900)$ and inflexion at $2100-2160 \AA(\varepsilon 10,900)$; in $0 \cdot 05 \mathrm{~N}$-sodium hydroxide, max. at $2160(\varepsilon 18,000), 2370(\varepsilon 18,000)$, and $2850(\varepsilon 7000)$ and inflexion at $3050-3200 \AA(\varepsilon 5000)$.

Opianic Acid.-Meconin (500 mg .) in benzene ($12 \mathrm{c} . \mathrm{c}$.) and carbon tetrachloride (12 c.c.) was refluxed with N-bromosuccinimide ($1.69 \mathrm{~g} ., 1.5 \mathrm{mols}$.). The succinimide was removed, the filtrate evaporated, and the remaining gum heated with water ($50 \mathrm{c} . \mathrm{c}$.) on the steam-bath with stirring for $\frac{1}{2} \mathrm{hr}$. The solid which separated on cooling crystallised from water, to give opianic acid (300 mg .) as needles, m. p. and mixed m. p. 147° (Found : equiv., 215. Calc. for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{5}$: equiv., 210).

3-Bromo-opianic Acid.-(a) Under the same conditions as in the preceding experiment 4 -bromomeconin ${ }^{6}(500 \mathrm{mg}$.) gave 3-bromo-opianic acid (280 mg .) which separated from water as needles, m. p. and mixed m. p. 202° (lit., ${ }^{7}$ m. p. 204°) (Found: C, $41 \cdot 5 ; \mathrm{H}, 3 \cdot 4$. Calc. for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{O}_{5} \mathrm{Br}: \mathrm{C}, 41 \cdot 5 ; \mathrm{H}, 3 \cdot 1 \%$). Light absorption in $0 \cdot 05 \mathrm{~N}-\mathrm{NaOH}$: Max. at $2380(\varepsilon 19,000)$ and $2860 \AA(\varepsilon 14,000)$.
(b) 4-Bromomeconin (300 mg .) was heated at 80° in an autoclave with dimethylamine ($35 \mathrm{c} . \mathrm{c}$.) and ethanol (30 c.c.) for 3 hr . The mixture was then treated according to Blair, Brown, and Newbold ${ }^{8}$ involving oxidation and hydrolysis, to give 3 -bromo-opianic acid (120 mg .) as needles, m. p. and mixed m. p. 204°.

4-Bromomeconin.-A solution of 3 -bromo-opianic acid (100 mg .) in saturated aqueous sodium hydrogen carbonate (10 c.c.) was kept overnight at room temperature with sodium borohydride

[^2](100 mg .). The crystalline precipitate obtained on acidification with 5 N -hydrochloric acid was once recrystallised from ethanol, to give 4-bromomeconin (90 mg .) as needles, m . p. and mixed m. p. 176°.

3-Methylopianic Acid (3:4-Dimethoxy-6-methylphthalaldehydic Acid).—4-Methylmeconin ${ }^{9}$ (150 mg .) in benzene (12 c.c.) and carbon tetrachloride (12 c.c.) was refluxed for $1 \frac{1}{2} \mathrm{hr}$. with N-bromosuccinimide (164 mg ., $\mathbf{1 . 3}$ mols.). Filtration, evaporation, and aqueous hydrolysis for $1 \frac{1}{2} \mathrm{hr}$., followed by isolation of the product by chloroform and purification through aqueous sodium hydrogen carbonate, gave 3 -methylopianic acid (85 mg .) as needles, m. p. 191-191.5 (Found: C, $58.7 ; \mathrm{H}, 5 \cdot 4 . \quad \mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{5}$ requires $\mathrm{C}, 58.9 ; \mathrm{H}, 5 \cdot 4 \%$). Light absorption in water : Max. at $2130(\varepsilon 29,000)$ and $3120(\varepsilon 3300)$, and inflexion at $2490 \AA(\varepsilon 4800)$.

3-Methylhemipinic Anhydride (3:4-Dimethoxy-6-methylphthalic Anhydride).-(a) 4-Methylmeconin (200 mg .) was dissolved in hot 2 N -sodium hydroxide ($10 \mathrm{c} . \mathrm{c}$.), and the solution cooled, treated with 5% aqueous potassium permanganate ($17 \cdot 6 \mathrm{c} . \mathrm{c}$.), and heated on the steam-bath for 10 min . After addition of methanol the mixture was cooled and filtered from manganese dioxide. The filtrate and washings were concentrated under reduced pressure to ca. 5 c.c. and acidified (Congo-red) with hydrochloric acid ($d \mathbf{l} \cdot 16$). After being kept overnight the solid which had separated was collected and crystallised from aqueous ethanol, to give 3-methylhemipinic anhydride (102 mg .) as needles, m. p. 186-187 ${ }^{\circ}$ (Found : C, $59.45 ; \mathrm{H}, 4 \cdot 8 . \quad \mathrm{C}_{11} \mathrm{H}_{10} \mathrm{O}_{5}$ requires $\mathrm{C}, 59.5 ; \mathrm{H}, 4.5 \%$).
(b) By the same method 3-methylopianic acid (186 mg .) gave 3-methylhemipinic anhydride (105 mg .), needles, m. p. $186-187^{\circ}$ alone or mixed with preparation (a).

[^0]: * Part VI, J., 1954, 3935.
 \dagger For convenience only this tautomeric form is shown.
 ${ }^{1}$ Brown and Newbold, $J ., 1954,1076$.
 ${ }^{2}$ Idem, J., 1953, 3648.
 ${ }^{3}$ Idem, J., 1952, 4878.
 ${ }^{4}$ Blair and Newbold, J., 1954, 3935.
 ${ }^{5}$ Brown and Newbold, J., 1953, 1285.
 ${ }^{6}$ Perkin and Robinson, $J ., 1911,99,775$.
 ${ }^{7}$ Prinz, J. prakt. Chem., 1881, 24, 353; Wegscheider, Monatsh., 1883, 4, 267.

[^1]: ${ }^{8}$ Blair, Brown, and Newbold, $J ., 1955,708$.
 ${ }^{9}$ Manske and Ledingham, Canad. J. Res., 1944, 22, B, 115.
 10 Freund and Fleischer, Annalen, 1916, 411, 14; Alder and Vogt, ibid., 1951, 571, 137; Parker and Goldblatt, J. Amer. Chem. Soc., 1950, 72, 2151; Graves and Adams, ibid., 1923, 45, 2439; Helferich and Bodenbender, Ber., 1923, 56, 1112.
 ${ }_{11}$ Weygand, Eberhardt, Linden, Schäfer, and Eigen, Angew. Chem., 1953, 65, 525.

[^2]: 12 Brown and Newbold, $J ., 1952,4397$.

